banner

郭昕助理教授到岗

郭昕助理教授到岗

 

个人简介

郭昕,女,籍贯广东广州。研究方向为马氏决策过程与随机博弈,一作文章8篇,在审文章3篇,分别发表在概率统计国际权威杂志Appl. Math. Optim.,Adv.Appl.Prob. ,J. Math. Anal. Appl.,J. Appl. Prob.,4OR-Q.J.Oper.Res.等,并获得第69批中国博士后科学基金面上资助。

 

研究领域

针对不同准则下的马氏决策过程(Markov Decision Processes),寻找最优策略的存在性条件及其算法;对于零和及非零和的随机博弈(Stochastic Games),证明纳什均衡策略的存在性条件及其算法。基于以上存在性证明所得结论,结合实际例子进行对理论的阐释。

 

教育背景

2012- 2016      中山大学,数学学院,学士

2016- 2020      University of Liverpool,School of Mathematical Sciences,博士

 

工作经历

2020 - 2022    清华大学,助理研究员

2022 - 至今     中山大学理学院,助理教授

 

代表性成果

1、Guo, X. and Zhang, Y*. On risk-sensitive piecewise deterministic Markov decision processes. Appl. Math. Optim. 81, 685-710.  (2018)

2、Guo, X.; Liu, Q.L. and Zhang, Y*. Finite horizon risk-sensitive continuous-time Markov decision processes with unbounded transition and cost rates. 4OR-Q.J.Oper.Res. 17, 427-442. (2018)

3、Guo, X.; Kurushima, A. ; Piunovskiy, A. and Zhang, Y*.  On gradual-impulse control of continuous-time Markov decision processes with an exponential utility. Adv. Appl. Prob.  53, 301-334. (2019)

4、Guo, X. and Huang, Y.H*. Risk-sensitive average continuous-time Markov decision processes with unbounded transition and cost rates.  J. Appl. Prob. 58, 523-550.   (2021)

5、Guo, X.*; Chen, J. ; Li, Z.C. Zero-sum risk-sensitive stochastic games with unbounded payoff functions and varying discount factors. J. Math. Anal. Appl. In press. (2022)