banner

崔尚斌 教授

电子邮箱:cuishb@mail.sysu.edu.cn

研究领域:主要科研项目:

(1)应用偏微分方程的若干问题, 国家自然科学基金面上项目,2016.1-2019.12,

(2)生物学和物理学中的偏微分方程问题,国家自然科学基金面上项目,2012.1-2015.12,

(3)肿瘤生长的自由边界问题和非线性发展方程,国家自然科学基金面上项目,2008.1-2010.12,

(4)非球对称肿瘤生长的自由边界问题,国家自然科学基金面上项目,2005.1-2007.12,

(5)肿瘤生长的自由边界问题,国家自然科学基金面上项目,2002.1-2004.12,

个人简介

男,中共党员,博士生导师,主要研究偏微分方程、数学生物学、Fourier分析。

教育背景

1978.9-1988.6 兰州大学,数学力学系,本科/硕士/博士

工作经历

1985.9-1999.10,兰州大学数学力学系,助教、讲师,

1990.9-1992.9,兰州大学数学力学系,副教授、硕士生导师,

1992.9-1999.10,兰州大学数学力学系,教授,

1995.9-1999.10,兰州大学数学力学系,起任博士生导师,

1999.10-2023.1,中山大学数计学院,教授、博士生导师,

2023.2至今,中山大学理学院,教授、博士生导师,

访学经历

1998.3-1999.2,美国明尼苏达大学数学及其应用研究所,访问学者,

2001.10-2002.9,美国俄亥俄州立大学数学系,访问学者,

2008.9-2009.8,美国芝加哥大学数学系,访问学者,

2005夏,德国汉诺威大学应用数学研究所,访问学者,

2007夏,法国巴黎高等师范学校数学及其应用系,访问学者,

研究成果

主要科研项目:

(1)应用偏微分方程的若干问题, 国家自然科学基金面上项目,2016.1-2019.12,

(2)生物学和物理学中的偏微分方程问题,国家自然科学基金面上项目,2012.1-2015.12,

(3)肿瘤生长的自由边界问题和非线性发展方程,国家自然科学基金面上项目,2008.1-2010.12,

(4)非球对称肿瘤生长的自由边界问题,国家自然科学基金面上项目,2005.1-2007.12,

(5)肿瘤生长的自由边界问题,国家自然科学基金面上项目,2002.1-2004.12,

著作:

(1) 《偏微分方程现代理论》,科学出版社,2016.

(2) 《数学分析教程(上、中、下)》,科学出版社,2013.

(3) 《幂零Lie群上的Fourier分析和不变偏微分算子》,兰州大学出版社,1993.

(4) 《解析几何》,兰州大学出版社,1993.

论文:

迄今已独立或与合作者合作发表论文160余篇。以下是近十年来独立或为第一作者发表的研究论文:

[1] (with Meng Bai) Mathematical analysis of population migration and itseffects to spread of epidemics, Discrete andContinuous Dynamical Systems Series B, 29(2015), no.9, 2819-2858.

[2] Linearized stability for a multi-dimensional free boundary problem modelling two-phase tumour growth,Nonlinearity, 27(2014), no.2, 1--35.

[3] Asymptotic stability of the stationarysolution for a parabolic hyperbolic free boundary problem modeling tumor growth,SIAM Journal of Mathematical Analysis, 45(2013), no.5,2870–2893.

[4] (with Carlos E. Kenig) Weak continuity of the flow map for theBenjamin-Ono equation on the line, Journal of Fourier Analysis andApplications, vol.16 (2010), no. 6, pp.1021-1052.

[5] (with Carlos E. Kenig) Weak continuity of dynamical systems for the KdVand mKdV equations. Differential and Integral Equations, vol.23 (2010), no.11-12, pp.1001-1022.

[6] Lie group action and stability analysis of stationary solutions for afree boundary problem modelling tumor growth. Journal of DifferentialEquations, 246(2009), no.5, 1845--1882.

[7] (with Joachim Escher) Well-posedness and stability of a multidimensionaltumor growth model,Archive for Rational Mechanics and Analysis,191(2009), no.1,173--193.

[8] Asymptotic stability of the stationary solution for a hyperbolic free boundary problem modeling tumor growth, SIAM Journal of MathematicalAnalysis, 41(2008), no.4, 1692--1724.

[9] (with Joachim Escher) Asymptotic behavior of solutions of amultidimensional moving boundary problem modeling tumor growth,  Communications on Partial DifferentialEquations, 33(2008), no.4--6, 636--655.

[10] Well-posedness of a multidimensional free boundary problem modeling thegrowth of nonnecrotic tumors, Journal of Functional Analysis, 245(2007), no.1,1--18.

[11] (with Joachim Escher) Bifurcation analysis of an elliptic free  boundary problem modeling growth of avasculartumors, SIAM Journal  of MathematicalAnalysis, 39(2007), no.1, 210--235.

[12] (with Shihe Xu) Analysis of mathematical models for the growth of  tumors with time delays in cellproliferation, Journal of Mathematical Analysis and Applications, 336(2007),no. 1, 523--541.

[13] (with Cuihua Guo) Well-posedness of higher-order nonlinear Schrodingerequations in Sobolev spaces Hs(Rn) and applications, Nonlinear Analysis, Theory, Methods and Applications,67(2007), no.3, 687--707.

[14]  Pointwise estimates foroscillatory integrals and related Lp-Lq estimates II: multidimensional case, Journal of Fourier Analysisand  Applications, 16(2006), no.6,605--627.

[15] Existence of a stationary solution for the modified Ward-King  tumor growth model, Advances in AppliedMathematics, 36(2006), no.4, 421--445.

[16] Formation of necrotic cores in the growth of tumors: analytic  results, Acta Mathematica Scientia (EnglishSeries), 26(2006), no.4, 781--796.

[17] (with Donggao Deng and Shuangping Tao) Global existence of solutionsfor the Cauchy problem of the Kawahara equation with L2  initial data, Acta Mathematica Sinica(English Series), 22(2006), no.5,1457--1466.